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GAME PROBLEM OF THE DESIGN OF A MULTI-IMPULSE MOTION CORRECTION* 

A. A. MHLIKIAN 

A dynamic system acted on by magnitude-bounded noise is examined. The deviation 
caused by the noise is corrected by a finite number of impulses whose total resource 
is bounded. The problem of designing an optimal correction whose elements are 
certain (signal) surfaces is investigated. The application of the dynamic program- 
ming method leads to a boundary-value problem with an unknown boundary. Necessary 
conditions (relations (2.5)) are obtained for the optimality of the desired bound- 
ary (the signal surface). These conditions, together with the well-known dynamic 
programming relations, form a complete system of necessary conditions permitting 
the construction of the problem's solution. The approach presented is applied to 
a two-parameter system admitting of self-similar solutions. In theme the paper 
border on the investigations in /l-4/; a programmed approach to impulse correction 
problems was used in /3---5/i /6-9/ contain investigations on the design of optimal 
correction in stochastic systems. 

1. Statement of the problem. Let the motion of a dynamic system on a fixed in- 
terval [to, 2'1 be described by the differential equation and initial condition 

5' = f (2, V, t) + B (t)u, t, < t < T, x (to - 0) = so (1.1) 

Here SE R” is the system's phase vector, B(t)is an n x n-matrix continuous in t, u E R” is 
the control, v E R”‘ is the noise vector whose value at instant t has the constraint 

v(t) E Vf c R"', m < n (1.2) 

where Vt is a convex compact set continuously dependent on time. As admissible noise we 
consider summable time functions v(t), t, <<t < T, satisfying constraint (1.2). We assume that 
the time realization of control u is a sum of a finite number of delta functions 

U,(t)= i Iris(t--li), toQtr<.. 
i=l 

.,<h<TT, i&(ui)<Q>O 
(1.3) 

The total number Nof impulses and their resource Q are specified. The intensity of an in- 
dividual impulse is estimated by a continuous scalar function R (4 R (4 > 0, u E RR, u + 0, 
R (0) = 0. 

The control is called on to neutralize the action of the noises in the sense of minimiz- 
ing the functional 

J = F (5 (T)) ’ (1.4) 

where F(z)is a prescribed continuous function bounded from below. It is assumed that the func- 
tion f(z,v,t) in (1.1) is continuous in all the arguments x,v,t and satisfies a Lipschitz 
condition in z, so that for any admissible noise v(t) and vector X'E R” a unique solution 
of the Cauchy problem /lo/ 

5' == f (z, v, t), t’< t < T, x (t’) = 5’ (1.5) 

exists on the interval It’, Tl, to< t’< T. A motion (solution) of system (1.5) is called an 
uncontrollable motion of system (1.1). Later on we examine a positional method for forming 
control u. An arbitrary current state of system (1.1) is completely described by specifying 
a position (5, q, t, k), x E R”, q E CO, Ql, t E It,, Tl, k = 0, I, . . ., N, where the quantity Q has the 
sense of total intensity on the I; impulses allowed. The vector 5 is, for definiteness, treat- 
ed as the system's phase state up to a possible impulse at instant t, i.e., x = z (t - 0). 

We say that a positional control (a design) has been specified if in the space (z,~,t) 
signal hypersurfaces rr have been prescribed, which separate the region being considered from 
this space into two sets Gk and Dk for each h- = 1, . . ..N (Fig-l), and if the functions & = 
% (5, 9, 0 for (x,q,t)EDk for each k- 1,. .,N. Surface Tr belongs to the boundary of the 
closed set Dk. If (5, q,t)EDb at the initial instant (point 1 in Fig.l), then the first of 
the k admissible impulses of intensity uh (x,q,t) is fed in right away. At the points of set 
Gk we assign ur(z, q,t) = 0; the impulse is fed in only until the representative point (x, q,t$ 

reaches the signal surface rk (point 2). By definition we set r0 = D, = {(x,q,t): t = 7’). 
The following constraints on the design follow from 1.3: 
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R(uk(x,q,t)<q, k=l,..., N, (z+,q+,t)~Gk-IIJM,,, M,={(x,q,t):q=O}, k=2 ,..., ,v (1.6) 

x+ = x + B (t)uk, q+ = q - I? (uk) 
Here MO is a set in space (z, q,t), corresponding to a zero resource. The inclusion in (1.6) 
ensures that two successive nonzero impulses are spread out in time, i.e., ensures strict 

inequalities in (1.3). The collection (uk,rh), k = 1, . . ..N. satisfying constraints (1.61, 
is called an admissible design and is denoted by u for brevity. We note that the surfaces r, 
may not be specially delineated, but they can be treated through the agency of functions 

z+ (2, q,t) as the boundaries of sets on which Uk = 0. However, the necessary optimality condi- 
tions presented later on in the paper are written in terms of pk. 

From the specified admissible design U, noise V and position (x, q, t, k) a unique phase 
trajectory s(z), TE [t, Tl of system (1.1) is defined, having no more than k $1 intervals of 

absolute continuity. Let us describe an algorithm for constructing trajectories. If q=o 
or k = 0. the motion of system (1.1) is uncontrollable and the assertion made is valid. Let 

q, k > 0. We can examine an uncontrollable motion X(7), ZE It, Tl, z(t) == Z, and find the earliest 
instant r = t, E [t, T] for which the inclusion z(t)EDh is fulfilled. If r(r)@ Dh- obtains 
for all TE ]t, T], the trajectory construction is ended. Otherwise, from the representative 

point up to the jump, (xl, q, tl), x1 = x (tl), we construct the representative point after the jump, 

(5;F? 4+* t,),in accordance with equalities (1.6). If rr = T, the construction ends and the 

trajectory is completed by a jump at instant 2'. In the case t x-l t, < T we arrive at the 

original situation but from the position (x1+, q+,tl,k- 1). The procedure is repeated no more 
than k times and the process ends either with the construction of the last uncontrollable 

part of the trajectory or with a jump at instant T. In the latter case we should use the 
vector s(T+ 0) to compute functional (1.4). Thus, to the specified u and v(x, q,t,k) corres- 

ponds a unique trajectory of system (1.1) and, correspondingly, the value J = J (u, v, z, q, t, k) = 

F (I (T)) of functional (1.4). 
We define the Bellman function Sk (x, q,t), k = 0, 1,. .., 

=4 N, x E R”, q E (0, QJ, t E It,, Tl by the equality 

j Of Sk1 (z, (I, t) = min sup J (1.7) 
u lJ 

! 4 under the assumption that the minimum exists. The extrema 

in (1.7) are computed with respect to those parts of the 

admissible designs and noise that determine the motion 

from position (5, q, t, k). We continue the functions S~(X,Q, 
t), k = 1, . . ..N. onto the boundary t 2 T by continuity 

and we define there the function S, by the equality 

S, (5, q, T) = F (2) (1.8) 

It can be shown that then the function Sk&q, t), k -= 0, 1, 
. . ., N, is continuous for z E R”, q E CO, Ql, t E [to, Tl. The 
magnitude of Sk@, q,t) is the minimum guaranteed value of 

functional (1.4) if the motion of system (1.1) starts at 

to T instant t from point z and a resource q is prescribed on 

k correction impulses. From the sense of the problems 

Fig.1 
and from equality (2.1) it follows that the functions 

S,(z,q,t) decreases, in general, as q or k grows. 
We note that the question on sufficient conditions for the existence of an optimal design 

for system (l.l)-(1.3) is the subject of a special investigation and is not examined in the 

present paper. 

2. Necessary conditions. We introduce into consideration the functions s1;+ (5, 4, 0, 

z E R", q E IO, 91, t E Lt,, TI, setting, by definition, 

sk+ (r, q, t) = min Sh._l (x + B (t)u, q - R (u), t), R (u) < q, k -= 1. . ., N (2.1) 

From the continuity of functions Sh. and R follows the continuity of Sk+ in its domain. Further, 

let s(r,t) be a scalar function differentiable in z and t. We adopt the notation 

(2.2) 

in which the scalar product of the gradient vector and the vector of right-hand sides in (1.5) 

has been indicated by parentheses. We assume that the optimal design u exists, i.e., optimal 

uk and rk exist, while in the domains being considered the functions Sh. and Sh.+ have nonempty 

sets of points of continuous differentiability. Then the following system of necessaryoptimal- 

ity conditions holds: 

P (S,) ~ 0, (z, q, t) E Gh.. Sk Ir, -= Sk+, S,+ 1~. = I+’ (4, k : 0, 1, ., iv (2.3) 
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Sk (5, q, t) = Sk+ (z, q, t), (5, qt t) 6% Dkt k = 1, + . es N (2.4) 

The relations containing operator Phold at the points of continuous differentiability of 
functions SK. and Sk+. The second inequality in (2.5) is examined in the e-neighborhood of 
only those points N = (I', q’,t’) of boundary Pk, for which a nonzero interval 0 < ii < 6, (NJ 
of values of 8 exists satisfying the condition 

(I, (1, t - 8) E Gp, (x, q, t + 6) E D&r (& 9. t) E rk fl NE (2.6) 

for some e:=e(N)>O. Condition (2.6) signifies that a straight line parallel to the t-axis 
in space (~,p,t) strictly intersects surface Pg at point N. 

Let us turn to the justification of the necessity of conditions (2.3)- (2.5). Equality 
(2.4) follows from the definitions of functions Sk and Sk+ and of the domains uk and express- 
es the relation of discrete dynamic programming /ll/. Conditions (2.3) are dynamic program- 
ming relations for a continuous system; they can be obtained by considering in domains Gk the 
auxiliary controlled process (1.5) with parameter q, termination condition (x,%t) Ep& and 
functional to be maximized, equal to the magnitude of Sk+(t,p,t) at the process termination 

instant. To justify the first inequality in (2.5) we consider an abitrary interior point 
(x, q, t) of set Dk; here (I plays the role of a parameter and, therefore, the limit values 0 
and Q can be allowed for it. From the optimality of the design being examined it follows that 
for any sufficiently small At>0 we can find a noise U(T), f fr<t-+- Ailt, such that by virtue 
of (1.5) (r+As,g,t+At)EDk and ~~+(~,q,t)< S&+(5+ A~,q,t f At) for the corresponding increment 
Al of the phase vector. In other words, if the controlling side in set D& is slow infeeding 

in the impulse, then a noise exists which, in general, worsens the position from the point of 
view of minimizing the functional. By maximizing the right-hand side of the inequalitypresent- 
ed with respect to L' and letting At -0, we arrive at the inequality D(Sk)= P(Sk+)>,O. Let us 
sketch the proof of the second inequality in (2.5). We assume the contrary: a point N = (2, q, 
t)>rk possessingproperty (2.6) and its s-neighborhood Iv"with some e >0 exist for which 
the strict inequality P(Sk*)>O holds when (r,g,t)~N'(Jf&. On the characteristics of the 
above-mentioned auxiliary optimal control problem we consider a point N, sufficiently close 
to N (Fig-l). Having assumed the contrary , we can find a noise value on themotion's segment 
from N, to i'k such that for the new point N, of going onto the boundary we obtain Sk+ fN) < 

Sk+(lv,)<Sk+(N,f in contradiction with the fact that from point N, the worst noise leads to the 
value Sk+(N) for functional J. 

We note that if the quantity P(Sk+) is continuous in a neighborhood of II*, then condi- 
tion (2.5) yields the equality 

P(S$) = 0 (2.7) 

for the points (5,q, tf E rk , which for a known function Sk* can be treated as an implicit 
SpeCifi.CatiOn Of surface rk. Let us describe the algorithm for constructing the optimal func- 
tions St and uk and the boundaries r& with the aid of conditions (2.3)- (2.5) and (2.7). 

Stage 1. The boundary Pk, the domain Dh, and the functions uk and S, = Sk' in this 
domain are known for some k. The boundary-value problem (2.3) is solved: P(S,) = 0, SI, = Sk+ 

when (I, q, t) E rk. The function Sk(z, q,t) becomes known in the whole domain Dk IJ Gk being 
examined. The values of the worst noise, furnishing the maximum with respect to V in operator 

P, are found when solving the boundary-value problem. 

Stage 2. From the known function Sk, in accord with (2-l), the function Sk+,+ is 
constructed for all (~,p,t), i.e., in the domain G,,, U D,,,. By the same token the functions 
S &+, and uk+l have been found in the as yet unknown domain Dk+, (see (2.4)). The quantity 
uk+r supplies the minimum in (2.1). 

Stage 3. Using the function S,+,+ constructed the boundary Pk+r is found by relations 
(2.5)and (2.7) as the set of points (~,q,t) on which the quantity P(Sk,,) changes sign, or 
vanishes. After this there is a return to Stage 1 with a number of impulses equal to k + 1. 

The algorithm's workbeginswith Stage 1 for k :. 0 with the Do = I?, and so+ = F (z) 
specified in (2.3). 

We remark on the application of relations (2.5) and (2.7). The finding of boundary I', 
qualitatively differs from the case of rk. k>i, because the minimum with respect to U in 
(2-l), for Sk+,k>l, in a neighborhood of points (r,q,t)~pk, is reached at an interior point 
!<‘,R(u*)<q. This is explained by the fact a nonzero resource must be left for the succeeding 
correction impulses. Therefore, when k> 1 we can expect the smoothness of function Sk+ in a 
neighborhood of r* and apply equality (2.7) for finding the boundary. It can be shown that 
under certain assumptions on functions f, F, fi the surface I', lies on the boundary of the 
set of points (~,q,t) for which the minimum in (2.1) is reached on I!* such that R(u*)<c,. Thus, 
the nature of the minimum in (2.1) is different on the different sides of boundary I',, which 
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can be a source of nonsmoothness of function S,+ on 1', 

3. Optimal correction of a two-parameter system. We consider the problem 0f 

designing the optimal correction for a system (l-l)-- (1.4) of form 

where r, u, u are vectors of like dimension, 1 x 1 is the length of vector z, cz.c are positive 
scalar parameters. Here the function R from (1.3) has the form R (u) = 1 u 1’. We note that by 

examining the equation of motion x' = cp(T - t)u f$((T - i)v we can be led to form (3.1) if 
the scalar functions 'P and 9 are related by q(h(r)) = at" for some a and a, where h(r) is the 

function inverse to p(E)such that dp/dg -E*(E), p(O) 2 0. The correction problem for the 
dynamic system I" _ u $ V with functional 1x(2’) 1 also can be reduced to form (3.1) witha='/,. 

Because system (3.1) is isotropic the Bellman function (1.7) for it will depend on three 

scalar arguments: 1 x 1, q, T = T-t and on an index k; the dimensions of the vectors make no 
difference to the analysis. Let us assume for simplicity that r,u,V are scalars. It can be 
shown that the function SI,(~S 1, ~,t) for system (3.1) does not decrease with growth of 15 1. 

Consequently, the minimum over u in (2.1) is reached when u = -pxl 1 x 1, p = I u I, and the 

minimization can be carried out with respect to parameter p. The transition from argument 
x to lx land from control u to p leads to the additional constraint 15 1 - Tap > 0. A con- 

sequence of the monotonicity of Sk with respect tolx 1 is also the equality I ash. I ax I =- Ash- I 
81s I. With due regard to these remarks we establish that the fundamental relations in (2.1)- 

(2.5), which are 

Sk+ (I X 

for system (3.1) 

transformations 

used to construct the optimal design, have the form 

I! % T) = min Sk-, (I X I - Tap, q - pa, T), Sk+ = Sk, p” < 4, 1 X 1 - Tap > 0 
(3.2) 

v 

P(s,)~-~++~0, P (Sk+) < 0, I’ (Sk’) > 0 

and are invariant realtive to the one-parameter (with parameterC)group of 

Sk = Csk', sh.+ = Csk+', 15 ) = c 1 I’ 1, T = CT’, Q L; (??-a$’ (3.3) 

Therefore, we can seek the functions Sk and Sk+, for example, in the form 

Sk (1 x 11 q, T) = 1 x I (Pk (5~ d, Sk+ (1 x 11 4, t) = I x [‘ph.+ (E, 3, f = T i 1 X 1, 9 = Q IX l”(a-l) (3.4) 

The boundaries rk are curves in the plane of the self-similar variables 5, 11; these curves 
are obtained with the aid of operator Ptransformed to the new variables. Thus. the desired 

functions (Pk and qk+ depend not on three but on two scalar variables. In domains Gk (in the 
variables g,'q) we can obtain, by using (2.3), (3.2) and (3.41, the following equation for 

function (pp: 

P((Pk)= -(I + E)+- -c u(a- l)n G-t cp,;=o (3.5) 

The general solution of this inhomogeneous linear equation /12/ has the form 

v,$ (E, n) = (1 f E)Fk (n (1 + g)"(a-l)), k = 0. 1. . . N (3.6) 

where Fk are functions of one variable. 

Let us note a number of properties of the desired functions Fk(h). With a zero resource, 

i.e., with q = O(q = 0), the Bellman function obviously is independent of index k. We have 

"1" (5, 8) = 'PO (E)Y whence, with due regard to the form of 'p. obtained below we get Fh.(0) = 1, k -: 
N. In addition, Fh.(h) are nonincreasing functions of argument h, which follows from 

&'&&responding property, noted in Sect.2, of the functions S,(z,ql,t) with respect to argu- 

ment q. The boundary r. is specified by the equality T=T-_t=O or 5 = 0. Since for 

system (3.1) we have J = F(Z) = IZ 1, from (1.8), (3.4) and (3.6) we obtain 'p. (8, 11) = 1 or 
F,z 1. Thus, 'p,, = (~~(5) =‘I + 5 and Stage 1 of the algorithm in Sect.2 has been implemented. 

To implement thealgorithm's second stage we write relation (2-l), with the aid of (3.2) and 

(3.4), in the form 

'pk+ (&, q) = min h (pk_l (5 / h, 9 (1 - ro)h”(+l)), 0 < r < 1, h > 0 , r = p I q, h = 1 - r5aq1,0 (3.7) 

Using (3.7) forr k = 1 and 'p,, := 1 + E, we obtain 

Q+ (E, n) = max IE, 1 + E - P@l (3.8) 

Two expressions for function cp;' correspond to the interior and the boundary minimum over r in 

(3.7). By the remark made to Stage 3 in Sect.2 the boundary rl is a curve on which there ex- 

pressions are equal. The same inference can be obtained by using (2.5), (3.5) and (3.8) since 

P (5) em_ -1 < 0. P (1 im 5 - E"r)'#") a~"-ll)"~ .? 0 (3.9) 

Equating the expressions within the brackets in (3.8) and using (2.5) and (3.9), we obtain 



Game problem of the design of a motion correction 559 

r, = ((E, 9): %aq = I}, D, = {(;, q) : %“q Q I), G, = {(f, q): %““I1 > 1) (3.10) 

By the same token we have taken one (the first) stage with respect to index k in the algorithm 
of Sect.2. According to Stage 1 of the next stage on boundary r,we have 'pl = cpl', whence 
with the aid of (3.6) and (3.8) we obtain an equality determining function F, 

F, (II (1 + 5)"'"") = % / (1 + E), %"q = 1 (3.11) 

The effective implementation of Stage 2,i.e., the computation of the minimum in (3.7), depends 
essentially on the values of aand s. From the results obtained for a programmed optimal 
correction problem /4,5/ it follows that in system (3.1) with a = 1 each optimal correction 
impulse is directed opposite to vector 5 and either is a compensating impusle (making the 
current value of Ix Ivanish) or uses up the whole correction resource. The positional form 
of such a correction law is 

ub = .+lox/ 1 x 1, (x, q, T) =D1, uk = --xi +, (x, 4, z) E Dk \ DI, k = 1, . . ., N (3.12) 

in the initial variables and is 

rk = 1, 6 11) ED,, rk=i/(E=+‘), (&,q>EDk\Dl, k=l I..., N (3.13) 

in the selfsimilar variables (3.4) and (3.7). Thus, the values of (3.12) (of (3.13)) with 
s = 1 furnish the minimum in (3.2) (in (3.7)). 

Henceforth we restrict consideration to only those values of a and 0 for which the design 
of the optimal correction in system (3.1) has the form (3.12), (3.13). Under certain values 
of parameters c( and U the optimal design, in general, can have another form. Under the assump- 
tion made an iterative application of the algorithm in Sect.2 leads to the following expres- 
ions for functions 'pk+ and qg,k = 1, . . ..N. 

i 
1 + 5 - wp, (5, 71) Eb 

1 
‘pk+ 6 ‘h (ET 11) ‘=Dk (3.14) 

cpk+(%") = %Fk_-l(~%a(a--l~-%-"), (%,q)=G1, cpk(E’rl) = (i +t)Fk(q(i +f)‘@-I)), (&,q)EGk 

and to a recurrent system of equalities for the construction of functions Fk and boundaries rk 

F, (n (1 + %)"@-I)) = % (1 + %)-IFk+ ((p - I)/ %O), (%Y d E rk, k - 1, . . ., N (3.15) 

Fk+ ((p - 1) i E") + U%-' [I + % + (a - l)pjFk_l' ((p - i) / %") = 0, k = 2, . . .> N, p = %“q (3.16) 

Equality (3.15) is a consequence of boundary condition (2.3), obtained by use of (3.4) and 
(3.6); for known rk and Fk-1 it determines the function Fk. Differential equality (3.16) is 
condition (2.71 of the explicit Specification of boundaries rk, transformed by (3.5) and 
(3.6); for a specified Fk_l it serves to find the points of boundary rk. If we have F,s 1 
and r, in (3.10), we can use (3.15) and (3.16) to determine in succession F,,r,,F,,r,,...,Fk, 
r k+l, . . . . After this the domains D,, and Gk become known,and the requiredquantities Sk and 
uh-are determined by equalities (3.4), (3.14), (3.12). 

Thus, in the case being examined the solution of the design problem for the optimal 
correction of system (3.1) reduces to the construction of two families of curves by using 
relations (3.15) and (3.16): the boundaries rk and the graphs of functions Fk(h). When a = 1 
relations (3.15) and (3.16) simplify somewhat and admit of the following analytic solution: 

Fk (11) = [I + (q/ k)‘n]+, Tr = {(& q): 5”q = k}, k = 1, . . ., N (3.17) 

When 0 = 1 formulas (3.17) can be obtained as well from the solution of the programmed problem 
considered in /3,5/. 

The author thanks N. N. Bolotnik and M. Iu. Borodovskii for discussing the paper. 
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